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A numerical simulation and a theoretical model of the two-dimensional flow produced by the harmonic
oscillation of a localized magnetic field �magnetic obstacle� in a quiescent viscous, electrically conducting fluid
are presented. Nonuniform Lorentz forces produced by induced currents interacting with the oscillating mag-
netic field create periodic laminar flow patterns that can be characterized by three parameters: the oscillation
Reynolds number, Re�, the Hartmann number, Ha, and the dimensionless amplitude of the magnetic obstacle
oscillation, D. The analysis is restricted to oscillations of small amplitude and Ha=100. The resulting flow
patterns are described and interpreted in terms of position and evolution of the critical points of the instanta-
neous streamlines. It is found that in most of the cycle, the flow is dominated by a pair of counter rotating
vortices that switch their direction of rotation twice per cycle. The transformation of the flow field present in
the first part of the cycle into the pattern displayed in the second half occurs via the generation of hyperbolic
and elliptic critical points. The numerical solution of the flow indicates that for low frequencies �v.e. Re�=1�,
two elliptic and two hyperbolic points are generated, while for high frequencies �v.e. Re�=100�, a more
complex topology involving four elliptic and two hyperbolic points appear. The bifurcation map for critical
points of the instantaneous streamline is obtained numerically and a theoretical model based on a local analysis
that predicts most of the qualitative properties calculated numerically is proposed.
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I. INTRODUCTION

Flows of electrically conducting liquids in localized mag-
netic fields present a very rich dynamic behavior. This rich-
ness has been exploited in problems such as the mixing of a
passive scalar with electromagnetic forcing �1–3� or the gen-
eration of fully controllable multiscale flows in laboratory
�4,5�. Recently, it has been shown theoretically and experi-
mentally that a uniform flow past a strongly localized mag-
netic field, called a magnetic obstacle, experiences an oppo-
sition produced by nonuniform Lorentz forces that may lead
to steady or time-dependent flow patterns, presenting some
similarities with flows past bluff bodies �6–10�. Some topo-
logical properties of the steady wake of a magnetic obstacle
have been explored �9�, but a detailed analysis of the topo-
logical behavior of the streamline patterns in the time-
dependent regime is not completed. Although quite remark-
able differences exist between flows past solid and magnetic
obstacles, to consider electromagnetic analogies of physical
situations where solid-fluid interactions lead to interesting
flow patterns may be worth exploring. That is the case, for
instance, of bluff bodies in oscillatory motion within viscous
fluids �11�. The analysis of the magnetic analog, namely, the
flow produced when a magnetic obstacle oscillates in a qui-
escent conducting fluid layer, is the aim of the present study.
Some aspects of motion generated by an oscillating magnetic
obstacle were briefly described in �12�.

The two-dimensional flow induced by an oscillatory mag-
netic obstacle is analyzed using a technique based on the

identification and evolution of the instantaneous critical
points. The role of the critical points for identifying struc-
tures in fluid flows has been acknowledged at least since
Legendre �13�. See also �14� for a review of early work in
this field. More recently, the role of critical points in complex
and turbulent flows has been a focus of attention �4,5,15�. We
will employ an efficient technique based on streamline cur-
vature proposed by Ouellette and Gollub �16� to locate criti-
cal points.

In the present case, the harmonic motion of the magnetic
obstacle generates a time-periodic localized Lorentz force
that creates a vortex dipole flow that switches the direction
of rotation twice per cycle. The transition between these ro-
tation states takes place in a rather short time interval and
involves the creation of elliptic and hyperbolic critical
points. The particular flow topology of this transition de-
pends on the oscillation frequency and, as it increases, bifur-
cations of the streamline patterns are observed, leading to
more complex flow structures. The flow dynamics is ana-
lyzed numerically in order to obtain a bifurcation map that
captures the topology of the flow transitions. Using a nonlin-
ear theory, the numerical approach is complemented with a
theoretical bifurcation analysis, based on the local analysis of
the streamline patterns, which provides a qualitative descrip-
tion of the flow.

II. FORMULATION

Consider a two-dimensional quiescent layer of an electri-
cally conducting, incompressible viscous fluid in the x-y
plane in presence of a spatially localized magnetic field B0.
The magnetic field distribution is assumed to be externally
imposed by a small square magnet that oscillates harmoni-
cally with a small amplitude with respect to the quiescent
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fluid. The dipolar magnetic field, for which an analytical ex-
pression exists �17�, is produced by a magnetized surface
uniformly polarized in the normal direction so that its mag-
netic moment points in the direction normal to the fluid layer.
Under these conditions, the dominant contribution of the ap-
plied field comes from the component normal to the x-y
plane, Bz

0, and is the only one considered. The oscillatory
motion of the applied field induces electric currents in the
fluid that interact with the imposed magnetic field and pro-
duce a periodic nonhomogeneous Lorentz force that stirs the
fluid and creates vorticity. The induced electric currents gen-
erate, in turn, an induced magnetic field b, which is assumed
to be much smaller than the applied field b�B0. This means
that the magnetic Reynolds number, Rm=��Ud, is much
less than unity, a condition that is satisfied in most laboratory
and industrial flows with liquid metals, molten salts, and
electrolytes. Here, � and � are the magnetic permeability
and the electrical conductivity of the fluid, respectively. In
turn U and d are characteristic scales of velocity and length.
Since there is no imposed flow, U is taken as the viscous
velocity � /d, where � is the kinematic viscosity of the fluid
and d is the side length of the square magnetized plate. The
dimensionless equations that govern the flow dynamics are
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where the subindex � denotes the projection of the � opera-
tor on the x-y plane. The velocity components, u and v, the
pressure p, and the induced electrical current density jx and
jy are normalized respectively by U, �U2, and �UBm, where
� is the mass density of the fluid. The applied field Bz

0�x ,y� is
normalized by Bm which is the maximum magnetic field
strength of the magnetic dipole. The dimensionless coordi-
nates x and y are normalized by d and time t is normalized
by the forced frequency of oscillation �. The dimensionless
parameters are the Hartmann number, Ha=Bmd�� /��, and
the oscillation Reynolds number, Re�=�d2 /�.

In addition, the induced magnetic field in the quasistatic
approximation is governed by the induction equation which
in the two-dimensional case, neglecting O�Rm� terms, re-
duces to

��
2 bz − u

�Bz
0

�x
− v

�Bz
0

�y
= Re�

�Bz
0

�t
, �4�

where the induced magnetic field bz has been normalized by
RmBm. Once bz is determined, Ampère’s law gives an ex-
pression to calculate electric currents, namely, jx=�bz /�y,
jy =−�bz /�x. This equation also guarantees that the electric
current density is divergence-free, � · j=0.

The harmonic motion of the external magnet is described
by the equation

x�t� = D sin�t� , �5�

where D=A /d is a geometrical parameter defined as the ratio
of the amplitude of the oscillation, A, and the characteristic
length scale.

We assume that the induced field is zero at a long enough,
finite distance from the source of the applied field. Therefore,
we impose the condition that the single component of the
induced field vanishes at all boundaries. We look for numeri-
cal solutions using a formulation based on the primitive vari-
ables, the velocity and pressure, and the induced magnetic
field as electromagnetic variable. The integration region is a
square of 25�25 units �measured in terms of the character-
istic length d�. The magnetic obstacle oscillates around the
geometrical center of the square in the x direction. A finite
difference method on an orthogonal equidistant grid of 636
�636 was used to solve the governing Eqs. �1�–�4�, assum-
ing a motionless fluid as initial condition and no-slip bound-
ary conditions for the velocity components �u=v=0� at all
boundaries. The standard time-marching procedure described
in �18� was extended to consider magntohydrodynamics
�MHD� flows.

The analysis of the flow is based on the identification of
critical points of the instantaneous streamlines that are gen-
erated in each cycle. In order to find the position and geo-
metrical characteristics of the critical points as functions of
time, we follow the methodology presented by �16,19�,
which consists in determining the curvature fields of the in-
stantaneous streamlines, and identifying the high curvature
isolated points as critical hyperbolic or elliptic points of the
flow. As explained in �16�, near the critical points, the direc-
tion of fluid particle trajectories changes over short length
scales. Therefore, it is expected that local maxima of curva-
ture correspond to topologically special points of the flow.
The nature of the critical points is found using the Okubo-
Weiss �OW� criterion in two dimensions �20�. In a region
dominated by rotation �elliptical critical point�, the enstrophy
is larger than the squared strain rate and the OW parameter is
positive. In contrast, if the local deformation dominates the
flow in a small region, the OW parameter is negative indi-
cating that the critical point is hyperbolic.

Two symmetries can be identified in the flow. First, given
that the magnetic obstacle moves along the horizontal direc-
tion, and that the structure of the magnetic field is symmetric
with respect to the same line, we have mirror symmetry with
respect to the y coordinate, i.e.,

u�x,y,	� = u�x,− y,	� ,

v�x,y,	� = − v�x,− y,	� . �6�

Second, after transients have died out, we have a cyclic
symmetry in the flow such that the velocity field transforms
according to the following reflection around the horizontal
axis:

u�x,y,	� → − u�− x,y,	 − 
� ,

v�x,y,	� → v�− x,y,	 − 
� . �7�
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III. NUMERICAL RESULTS

Since the most interesting flow dynamics is observed as
the oscillation frequency changes, the range of oscillation
Reynolds numbers explored is from 1 to 100. In turn, the
Hartmann number is fixed to a sufficiently high value �Ha
=100� so that MHD effects become relevant. Likewise, the
dimensionless amplitude of oscillation of the localized mag-
netic field is fixed at D=0.01. The flow displayed a transient
state that lasted 50 cycles. All results shown in this section
correspond to long times after the onset of the motion, once
the transient effects have died out. At long times, the motion
is periodic and will be described as a function of the phase
�−
�	�
� in the cycle.

A. Low oscillation frequencies (Re�=1)

With Re�=1, the dominant pattern of the flow generated
by the oscillatory localized magnetic field is a dipole-type
flow composed of two counter rotating vortices located sym-
metrically above and below the average position of the im-
posed magnetic field. Dipole vortices can also be observed
when a uniform flow passes through a nonoscillating mag-
netic obstacle, as discussed in �7,8�. These patterns are char-
acteristic of flows generated by point momentum sources
�21�. It is found that the direction of rotation of the dipole
vortex is reversed twice per cycle, in such a way that each
direction of rotation lasts half-cycle. The value 	=0 is
defined as the time where the magnet is at the point
�x=0,y=0�.

In Fig. 1 we show instantaneous streamlines for flows
with a relative phase of 
, illustrating the symmetry de-
scribed in Eq. �7�. The topological changes leading to
the reversal of the vortices are shown in Fig. 2. At
	=−927
 /1000 �Fig. 2�a��, the flow distribution is similar
to that observed at 	=−997
 /1000 �see Fig. 1�a��, but with
the instantaneous streamlines slightly perturbed near the av-
erage position of the magnet �x=0,y=0�. Then, at 	
=−895
 /1000 �Fig. 2�b��, a different picture is observed
where four new critical points clustered near the origin ap-
pear. Two symmetric elliptic points are located vertically dis-
placed above and below the origin; the direction of rotation
of the fluid around these elliptic points is opposite to that of
the vortical structures created in the previous half-cycle. Two
hyperbolic points appear along the horizontal axis one at
each side of the center of coordinates. The two hyperbolic
critical points are linked by two heteroclinic invariant mani-

folds that form a separatrix with isolated regions around the
recently formed elliptical points. The topology of the flow
pattern is similar at a later phase �	=−831
 /1000� as can be
seen in Fig. 2�c�, but the scale of the distribution of the
critical points located around the center is enlarged. The
original vortices generated in the previous cycle are pushed
away from the center by the emerging structures and tend to
dissipate due to viscous effects. The final stage of the flow
evolution is displayed in Fig. 2�d� �	=−752
 /1000�, where
the hyperbolic points and the vortex pair formed in the pre-
vious cycle are almost out of the region shown in the figure
and the vortex pair with opposite sense of rotation prevail.
This cycle is repeated when the oscillating magnet changes
its direction of motion; The thresholds where a new counter
rotating vortex pair is created are 	0=−896
 /1000 and
	0=104
 /1000.

Figure 3 shows the evolution of the x and y positions of
the critical points of the instantaneous streamlines as func-
tions of time phase. We follow a pair of each elliptic and
hyperbolic points that are cyclically generated, and move
away from the average position of the magnet in the y and x
directions, respectively. The initial and final velocities of the
elliptical points are larger just after 	o=−896
 /1000 and
104
 /1000. The velocity of the hyperbolic points is practi-
cally constant for the whole cycle.

The genesis of the critical points can be traced to the
behavior of the axial velocity as a function of time u�t� at the
horizontal line y=0. At this line, the vertical velocity is zero
due to the symmetry of the flow and the axial velocity
evolves in time according to the profiles shown in Fig. 4. At
	=−376
 /1000 the velocity profile displays a single local
maximum at approximately x=0. At subsequent times, the
absolute value of the velocity becomes smaller and its distri-
bution gradually develops a local minimum. This trend con-
tinues up to a time when the velocity distribution touches
tangentially the u=0 line, indicating that a critical point ap-
pears close to the origin. At this time, the local maximum is
the largest. At subsequent time instants, the velocity distribu-
tion crosses the u=0 line at two points �located nearly sym-

FIG. 1. Instantaneous streamlines for D=0.01, Ha=100, and
Re�=1: �a� 	=−997
 /1000, �b� 	=3
 /1000. The magnetic ob-
stacle is in the region −0.5�x�0.5 and −0.5�y�0.5.

FIG. 2. Instantaneous streamlines for D=0.01, Ha=100,
and Re�=1: �a� 	=−927
 /1000, �b� 	=−895
 /1000,
�c� 	=−831
 /1000, and �d� 	=−752
 /1000.
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metric around the origin� as can be appreciated in the inset of
Fig. 4. These points correspond to the hyperbolic critical
points shown in Figs. 2�b�–2�d�. The small asymmetry dis-
played in the inset is generated by the fact that the flow
moves in opposite directions for positive and negative
phases, respectively.

B. High oscillation frequencies (Re�=100)

For Re�=100 and Ha=100, the qualitative flow features
in most of the cycle are similar to those described in the
previous paragraphs for Re�=1. Specifically, the flow is
dominated by two counter rotating vortices that switch direc-
tions of rotation twice per cycle. As in the previous example,
the phase is referred to the motion of the magnet, with

	=0 at the moment when the magnetic obstacle is at
�x=0,y=0� and has maximum velocity. However, for high
Re�, the transformation is more complex and at a smaller
scale as can be appreciated in Figs. 5–7. When the phase is
close to −553
 /1000, the speed of the flow is reduced at two
points located on the horizontal axis and at the sides of the
origin; eventually, two clusters of critical points with the
same distributions as those found for Re�=1, i.e., four ellip-
tical and four hyperbolic points, are formed inside the area
covered by the magnetized zone. This distribution of critical
points was not observed in the case Re�=1. The initial steps
in the transition are illustrated in Figs. 5�a� and 5�b�. At 	
=−542
 /1000 and for a short time interval smaller than
5
 /1000, the two sets of critical points are clearly separated
with a small interval of the horizontal axis where the trans-
versal velocity is very close to zero. This situation is illus-
trated in Fig. 5�b�. As will be discussed in more detail below,
in fact, the two recirculation zones do not appear simulta-
neously. A detailed analysis shows that the rightmost appears
first, but only a very short time interval follows before the
other is created. See the inset of Fig. 6 and the discussion of
Fig. 7. Shortly after they are formed, the two clusters move

FIG. 3. �Color online� Position of critical points of the instanta-
neous streamlines for D=0.01, Ha=100, and Re�=1: �a� y position
of elliptical points as a function of phase 	. Red �dark� and blue
�light� lines refer to vortices rotating clockwise and counterclock-
wise, respectively. �b� x position of hyperbolic points, as a function
of the phase 	.
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FIG. 5. Instantaneous streamlines for D=0.01, Ha=100, and
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 /1000, �b� 	=−542
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toward each other and merge to form structures of two ellip-
tic points with a hyperbolic point in between, that move
away from the y=0 line as illustrated in Fig. 5�c�. The two
hyperbolic points located further away from the origin in
Fig. 5�b� move along the horizontal line. The last qualitative
step in the evolution occurs when the two elliptic points and
one hyperbolic point in each cluster combine to form a single
elliptic point, suppressing the hyperbolic point. This configu-
ration is topologically equivalent to that shown in Fig. 5�a�,
but the rotation direction is reversed. The instantaneous ve-
locity profiles shown in Fig. 6 indicate the history of the
formation of the critical points. Just as it was described in the
case for smaller oscillatory Reynolds number, the asymmetry
of the extrema of the curves that is more clearly shown in the
inset of the figure is originated because the magnetic obstacle
moves in opposite directions in each half-cycle. The fact that
the flow is slightly asymmetric with respect to the vertical
line x=0 indicates that there should be a phase interval
�which might be very small�, where there is only one cluster
of two hyperbolic and two parabolic points located off the
point �x=0,y=0�. This situation is neatly illustrated in Fig. 7
where the instantaneous streamlines that correspond to 	
=469
 /1000 are shown. According to the inset of Fig. 6, at
this phase, only one maximum has passed through the line
u=0 and then only one set of two elliptic and two hyperbolic
points, located at the left side of point �x ,y�= �0,0� are
present.

C. Bifurcation map

The Re�−	 bifurcation map of qualitative behavior is
shown in Fig. 8. The inset in the figure shows the region
−0.59
�	�−0.51
 in greater detail. The symbols repre-
sent actual calculations and the lines separate regions with
different qualitative flow patterns. The plane is divided into
five regions. In the region above the line I there are no criti-
cal points in the immediate vicinity of the origin. In a larger
region critical points are present in the flow, with those clos-
est to the origin forming a vortex pair as in Fig. 1�a�. As line
I is crossed, a pair of counter rotating vortices are created.
An example of the flow is given in Fig. 2�b�. Line I passes
through the point Re�=1, 	=−896
 /1000, which is consis-
tent with Fig. 2. Above Re�=50, the flow transition is more
complicated. The leftmost line in the inset is labeled with

symbols I and II, since the scale of the plot prevents us from
resolving the two lines that separate an extremely narrow
region where only one set of two pairs of two elliptic and
two hyperbolic points are present. See Fig. 7. In the region
between lines I and III, a pair of clusters of two elliptic and
two hyperbolic points separated by a region of stagnant fluid
are observed as illustrated in Fig. 5�b�. The flow in the region
between lines III and IV is characterized by the two pairs of
two elliptic points separated by the homoclinic orbit of a
hyperbolic point. Each of these structures are located above
and below the horizontal line. An example of this flow is
shown in Fig. 5�c�. Finally, line IV separates regions with
and without homoclinic orbits.

IV. THEORETICAL BIFURCATION ANALYSIS

A local analysis of the streamline patterns near the sym-
metry line y=0 can be performed with the use of a normal
form of the velocity field, i.e., a simplification of the field
which nevertheless gives a qualitatively correct picture of the
streamline pattern �22,23�.

For the present flow, the velocity field can be expanded in
a Taylor series in y,

u = u0�x� + u2�x�y2 + u4�x�y4 + ¯ ,

v = − y�u0��x� +
1

3
u2��x�y2 +

1

5
u4��x�y4 + ¯� , �8�

where

uk�x� =
1

k!

�ku

�xk �x,0� . �9�

Only even-order terms of y appear in u due to the mirror
symmetry of the velocity field in the line y=0. See Eq. �6�.
The expression for v follows from u using the equation of
continuity.

The topology of the streamlines is in general given by the
lowest-order terms of the velocity field. The lowest-order
term in u including both x and y is u2�x�y2, and assuming the

FIG. 7. Instantaneous streamlines for D=0.01, Ha=100, and
Re�=100 and 	=469
 /1000.

FIG. 8. �Color online� Bifurcation diagram for critical points of
the instantaneous streamlines. Representative examples of flows are
shown in Figs. 2 and 5.
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nondegeneracy condition that this term does not vanish, we
drop terms of higher order and replace u2�x� by a constant,
which, after an appropriate scaling, can be chosen as 1.

The line y=0 is a streamline and the velocity here is given
by u0�x�. We approximate this by a polynomial

u0�x� = c0 + c1x + c2x2 + ¯ + cn−2xn−2 +
1

n
xn. �10�

The truncation order n is determined by the maximal number
of stagnation points that can occur in the specific flow.
Again, the value 1 /n is obtained by an appropriate scaling.
In the present case, the relevant choice is n=4, as discussed
in Sec. III, we observe up to four critical points on y=0. See
also Figs. 5 and 6. The term of degree n−1 is omitted, since
it can be removed by a translation of the origin.

Hence, we consider the normal form for the equations for
the streamlines

ẋ = u = u0�x� + y2,

ẏ = v = − yu0��x� , �11�

with u0 given by Eq. �10� and the ck being parameters. We
note in passing that a rigorous derivation of this normal form
can be obtained by perturbation methods following an ap-
proach previously used in similar situations �22–25�.

For n=4 the bifurcation diagram is three-dimensional de-
pending on the parameters c0 ,c1 ,c2. Since the system Eqs.
�11� is almost identical to the normal form for flow close to
the axis in axisymmetric flow �23,26�, the bifurcation analy-
sis here immediately follows from that case. Here we sum-
marize the results. The parameter space is divided by sur-
faces into regions with different flow topologies. Two of
these surfaces are

R�:c1
2 = �2

3
�3

�− c2 � �
��2c2 � �
�2, 
 � 0, �12�

where


 = c2
2 + 3c0. �13�

Intersecting R+ a recirculation zone is created, and at R− two
such zones merge into a single one. At

S:c1
2 = − 4�2

3
c2�3

, 
 � 0, �14�

a pair of critical points inside a recirculation zone are either
created or destroyed.

The coefficients ck depend on the physical parameters
which in the present flow are Re� and 	. Hence, the bifur-
cation diagram in the �Re� ,	� plane is found from a two-
dimensional slice in the �c0 ,c1 ,c2� parameter space, giving
rise to bifurcation curves where the slice intersects the bifur-
cation surfaces R� and S. From the plots of u0�x�, it appears
that this function is very close to being symmetric. See Figs.
4 and 6. One would expect this symmetry to be more pro-
nounced as the speed of the magnets tends to zero and even-
tually disappear for high magnet velocities. The function
u0�x� is perfectly symmetric when c1=0, and we hence ex-
pect that for the relevant slice c1�Re� ,	� takes small values.

In Fig. 9 we show such a slice for a small constant value of
c1. The two curves I and II are intersections with the bifur-
cation surface R+, the curve III is the intersection with R−,
and IV is the intersection with S. Three bifurcation curves
emanate from a single point, denoted a codimension-2 point.
When c1→0, the point moves toward I, and I and II coincide
in the limit c1=0.

The physical bifurcation diagram in the �Rew ,	� space is
obtained from a smooth deformation of this diagram. The
details will depend on the actual functional dependence be-
tween the physical and mathematical parameter, which can-
not be inferred from the present analysis. However, from a
simple linear relation between the two sets of parameter a
bifurcation diagram which is qualitative consistent with the
numerical results can be obtained. If the �Re� ,	� coordinate
system is located as indicated in Fig. 9, the two series of
simulations at Re�=1,100 intersect the bifurcation curves in
agreement with Figs. 2 and 5. More detailed and quantitative
information can be established from a rigorous perturbation
approach �23�. The point we want to stress here is that the
analysis shows that the set of streamline topologies obtained
numerically is expected to be complete, and, furthermore,
there is a natural partition of the vortex creation into two
kinds: Either Re� is below a certain threshold, and only a
single pair of vortices occur or Re� is above that threshold,
and the vortex creation has an intermediate step with two
vortex pairs. The threshold is obtained for the value of Re�

where the path passes through the codimension-2 point.
From Fig. 8 this happens for Re� slightly below 50.

The different flow topologies are shown in Fig. 9.

V. DISCUSSION AND CONCLUSIONS

A numerical study of the two-dimensional flow generated
by an oscillating magnetic obstacle reveals that in most of
the oscillatory cycle, the flow is dominated by two counter
rotating vortices with structure similar to the ones observed
when a localized magnetic obstacle is in constant relative
motion with respect to a thin layer of a conducting fluid like

FIG. 9. �Color online� Theoretical bifurcation diagram in the
c2 ,c0 parameter plane for c1=0.2. The dashed lines correspond to
the sequences of topologies in Figs. 2 and 5.
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that described by �6,8�. However, when the magnetic ob-
stacle oscillates, the vortex pair changes its direction of ro-
tation twice per cycle undergoing a flow transformation in-
volving the interplay of critical points in the instantaneous
streamlines that results in the flow reversal. In each cycle,
two new pair of vortices are created and those generated
previously are pushed away from the time average of the
position of the magnetic obstacle. As a new vortex pair is
created twice during a cycle, from a strict mathematical point
of view, there would eventually be an infinite array of vorti-
ces in the flow and they do not actually disappear as they
move away from the axis but only dissipate to a very low
strength. Given the specificities of the motion of the mag-
netic obstacle that we have chosen to study, the flow gener-
ated by the induced Lorentz force displays a cyclic symmetry
and a spatial symmetry, which restricts the distribution of
critical points in the flow. For larger oscillatory Reynolds
numbers, the interplay of the sets of elliptic and hyperbolic
critical points that appear near the time average position of
the magnetic obstacle is increasingly complex as displayed
in the map of qualitative behavior shown in Fig. 8. From the
trend displayed in this figure, we speculate that for larger
oscillator Reynolds numbers, the number of interspersed el-
liptic and hyperbolic points in each cluster located above and
below the symmetry line should increase. The fact that the
relatively simple local analysis described in Sec. IV gives a

surprisingly complete picture of the qualitative features of
the flow is due to the symmetries of the problem under
analysis. Specifically, it is observed that the motion reduces
to a one-dimensional flow along the line y=0. A key feature
of the local analysis is that the expansion is truncated at
fourth order. This is of course suggested by the fact that
u-velocity profile at y=0 calculated numerically has four
stagnation points. One must note however that the theoretical
analysis is local and does not contain information on the
outer vortical structures once they are expelled by the emerg-
ing vortices.

It is clear that a limitation of our model is the assumption
that only the vertical component of the magnetic field has
been considered. The horizontal components of the magnetic
field give rise to three-dimensional effects; however, in a
very shallow layer of electrically conducting fluid these com-
ponents would be much smaller than the dominant vertical
one. Therefore, to a good approximation the main character-
istic behavior of the magnetohydrodynamic flow can be de-
scribed by considering only the vertical component.
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